Copied to
clipboard

G = C8.9C42order 128 = 27

3rd non-split extension by C8 of C42 acting via C42/C2×C4=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: C8.9C42, C23.23SD16, (C2×C16)⋊12C4, C8.27(C4⋊C4), (C2×C8).48Q8, C8.C41C4, C2.D8.8C4, (C2×C4).163D8, (C2×C8).361D4, (C2×C4).32Q16, (C22×C16).5C2, (C2×C4).66SD16, C4.22(C2.D8), C8.40(C22⋊C4), (C22×C4).571D4, C4.50(D4⋊C4), C22.9(C4.Q8), C4.14(Q8⋊C4), C2.3(D8.C4), C4.3(C2.C42), (C22×C8).546C22, C22.9(Q8⋊C4), C23.25D4.1C2, C22.45(D4⋊C4), C2.12(C22.4Q16), (C2×C8).168(C2×C4), (C2×C4).110(C4⋊C4), (C2×C8.C4).2C2, (C2×C4).229(C22⋊C4), SmallGroup(128,114)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — C8.9C42
C1C2C4C8C2×C8C22×C8C22×C16 — C8.9C42
C1C2C4C8 — C8.9C42
C1C2×C4C22×C4C22×C8 — C8.9C42
C1C2C2C2C2C4C4C22×C8 — C8.9C42

Generators and relations for C8.9C42
 G = < a,b,c | a8=b4=1, c4=a2, bab-1=a-1, ac=ca, cbc-1=a-1b >

Subgroups: 120 in 66 conjugacy classes, 40 normal (32 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C23, C16, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C4.Q8, C2.D8, C8.C4, C8.C4, C2×C16, C2×C16, C42⋊C2, C22×C8, C2×M4(2), C23.25D4, C2×C8.C4, C22×C16, C8.9C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, D8, SD16, Q16, C2.C42, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C22.4Q16, D8.C4, C8.9C42

Smallest permutation representation of C8.9C42
On 64 points
Generators in S64
(1 3 5 7 9 11 13 15)(2 4 6 8 10 12 14 16)(17 27 21 31 25 19 29 23)(18 28 22 32 26 20 30 24)(33 35 37 39 41 43 45 47)(34 36 38 40 42 44 46 48)(49 59 53 63 57 51 61 55)(50 60 54 64 58 52 62 56)
(1 19 45 52)(2 30 46 63)(3 25 47 58)(4 20 48 53)(5 31 33 64)(6 26 34 59)(7 21 35 54)(8 32 36 49)(9 27 37 60)(10 22 38 55)(11 17 39 50)(12 28 40 61)(13 23 41 56)(14 18 42 51)(15 29 43 62)(16 24 44 57)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16)(17,27,21,31,25,19,29,23)(18,28,22,32,26,20,30,24)(33,35,37,39,41,43,45,47)(34,36,38,40,42,44,46,48)(49,59,53,63,57,51,61,55)(50,60,54,64,58,52,62,56), (1,19,45,52)(2,30,46,63)(3,25,47,58)(4,20,48,53)(5,31,33,64)(6,26,34,59)(7,21,35,54)(8,32,36,49)(9,27,37,60)(10,22,38,55)(11,17,39,50)(12,28,40,61)(13,23,41,56)(14,18,42,51)(15,29,43,62)(16,24,44,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)>;

G:=Group( (1,3,5,7,9,11,13,15)(2,4,6,8,10,12,14,16)(17,27,21,31,25,19,29,23)(18,28,22,32,26,20,30,24)(33,35,37,39,41,43,45,47)(34,36,38,40,42,44,46,48)(49,59,53,63,57,51,61,55)(50,60,54,64,58,52,62,56), (1,19,45,52)(2,30,46,63)(3,25,47,58)(4,20,48,53)(5,31,33,64)(6,26,34,59)(7,21,35,54)(8,32,36,49)(9,27,37,60)(10,22,38,55)(11,17,39,50)(12,28,40,61)(13,23,41,56)(14,18,42,51)(15,29,43,62)(16,24,44,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,3,5,7,9,11,13,15),(2,4,6,8,10,12,14,16),(17,27,21,31,25,19,29,23),(18,28,22,32,26,20,30,24),(33,35,37,39,41,43,45,47),(34,36,38,40,42,44,46,48),(49,59,53,63,57,51,61,55),(50,60,54,64,58,52,62,56)], [(1,19,45,52),(2,30,46,63),(3,25,47,58),(4,20,48,53),(5,31,33,64),(6,26,34,59),(7,21,35,54),(8,32,36,49),(9,27,37,60),(10,22,38,55),(11,17,39,50),(12,28,40,61),(13,23,41,56),(14,18,42,51),(15,29,43,62),(16,24,44,57)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J8A···8H8I8J8K8L16A···16P
order12222244444444448···8888816···16
size11112211112288882···288882···2

44 irreducible representations

dim111111122222222
type+++++-++-
imageC1C2C2C2C4C4C4D4Q8D4D8SD16Q16SD16D8.C4
kernelC8.9C42C23.25D4C2×C8.C4C22×C16C2.D8C8.C4C2×C16C2×C8C2×C8C22×C4C2×C4C2×C4C2×C4C23C2
# reps1111444211222216

Matrix representation of C8.9C42 in GL3(𝔽17) generated by

100
080
01415
,
400
01315
0164
,
400
050
026
G:=sub<GL(3,GF(17))| [1,0,0,0,8,14,0,0,15],[4,0,0,0,13,16,0,15,4],[4,0,0,0,5,2,0,0,6] >;

C8.9C42 in GAP, Magma, Sage, TeX

C_8._9C_4^2
% in TeX

G:=Group("C8.9C4^2");
// GroupNames label

G:=SmallGroup(128,114);
// by ID

G=gap.SmallGroup(128,114);
# by ID

G:=PCGroup([7,-2,2,-2,2,2,-2,-2,56,85,120,758,520,3924,242,4037,124]);
// Polycyclic

G:=Group<a,b,c|a^8=b^4=1,c^4=a^2,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^-1*b>;
// generators/relations

׿
×
𝔽